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exhibits the <j> correlations, and <f> dependence in each 
c m . separately, which no SZE or MSZE process can 
produce. 

We may conclude that an analysis of polarization 
correlations can distinguish three cases: 

(1) Exchange of one spin-zero meson (SZE): No 
correlations of C and D polarizations are possible. 

(2) Multiple spin-zero meson exchange (MSZE): 
There may be correlations between components of 

INTRODUCTION 

TH E wave function of a system consisting of three 
nucleons depends on the coordinates r», en, r*, 

i— 1, 2, 3, where n is the two-valued isospin coordinate, 
<Ti is the two-valued spin coordinate, and the space 
coordinate r%- ranges over three-dimensional Euclidian 
space. The possible wave functions ^{r^a^r^ are 
classified according to their transformation properties 
under translations, rotations, and reflections of the 
coordinate system and under permutations of the 
particle coordinates. The functions that belong to a 
definite representation K of the translation group are 

^K=exp(iK-R)^(^,9,(T,-,ri), i = l , 2, 3 (1) 
where 

R = i ( r i + r 2 + r 3 ) , 

^ = 6 - 1 / 2 ( r 1 + r 2 - 2 r 3 ) , (2) 

e=2- 1 / 2 ( r i -*2) . 

The vectors X and p are invariant under translations. 
The internal wave functions \p are chosen to have 
definite parity and to belong to definite irreducible 
representations of the quantum-mechanical rotation 
group SU2, and the permutation group SzT(TT where the 
Pauli principle specifies that $ must belong to the 
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polarization along the momentum transfer direction 
in the C c m . with components of polarization along 
the momentum transfer direction in the D c m . 

(3) Higher spin exchange: Violations of the two SZE 
criteria of Treiman and Yang, as well as correlations of 
the Treiman-Yang angles of directions in the two c.m.'s, 
may occur. 

I wish to thank S. B. Treiman for suggesting the 
study that led to this paper. 

antisymmetric representation of SzT<TT. The problem 
that will be considered here is the construction and 
parametrization of the functions yp. 

A function \f/ that belongs to the antisymmetric 
representation of SzT(XX can be split into parts that 
belong to definite irreducible representations of 53

T , 
S / , and .S3

r separately, where S3
T, Sf, and S3

r are the 
groups consisting of permutations of isospin, spin, and 
space coordinates only, respectively. Since these groups 
do not leave the Hamiltonian invariant, the three-
nucleon wave function cannot belong to a single 
irreducible representation of one of these groups, but 
must be a linear combination of functions, each of which 
belongs to a single irreducible representation of each 
of the groups SzT, Sza, 53

r . Since the irreducible represen
tations of S3* have definite total spin, the rotational 
classification, is completed by requiring that the space 
part of the function have definite orbital angular 
momentum L and definite parity, besides belonging to 
a definite irreducible representation of S3

r. 

THE GROUP S3 AND ITS REPRESENTATIONS 

The group Sz has three irreducible representations: 
a one-dimensional symmetric representation Rs, a 
one-dimensional antisymmetric representation RA, and 
a two-dimensional mixed representation RM- If <p 
belongs to Rs, then Pi<p= <p, where Pi is any permu
tation in 53 . Similarly, if <p belongs to RA, then Pi<p=ei(p 
where €$=±1 is the sign of the permutation P\ If <pi 
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and <p2 belong to RM, then PVi= =AiVi+-^>2iV2 and 
Pi<p2=Pi2i<pi+P22i<P2. By choosing a linear combination 
of <pi and <p2, the matrices P r s* can be put into a standard 
form. Since 5 3 is generated by P (12 ) and p(123>, it is 
sufficient to specify standard forms for P r s

( 1 2 ) and 
P r s

(123) in the mixed representation. These are taken 
to be 

/ I 0 \ ( -\ |v3\ 
P<m = l ) p(i28) = ( ) . (3) 

\0 - 1 / \ - J ^ - i / 
Then, for example, the standard form for P (13 ) is 

Here the permutation P<123) is understood to mean: 
where rx appears in <p, replace it by r2: where r2 appears, 
replace it by r3, etc. 

As an example, consider X and 9: 

po*)o,= 6-w ( r 2 + r x - 2r3) = X, 

p ( i 2 ) 9 = 2 - 1 / 2 ( r 2 - r 1 ) - - 9 , 

p a 2 3 ) ^ = 6 - 1 / 2 ( r 2 + r 3 - 2 r 1 ) = - ^ - | \ ^ 9 , 

p ( i 2 3 ) 9 = 2 - i / 2 ( r 2 - r 1 ) - i - v J ^ - i 9 . 

Hence for <£>i= ,̂ ^2=9, P (12 ) and P<123> take the forms 
(3), and X and 9 are the correct linear combinations 
to give the standard representation. The notation 
RM(X,Q) is used to indicate that X and p generate RM 
in standard form. In general, if xi and %2 are known 
to belong to RM, then it is necessary to find linear 
combinations of xi and X2 that are even and odd under 
P ( 1 2 ) . One off-diagonal matrix element of P<123> is 
needed to determine the correct relative factor. 

Table I gives the rules for forming the direct product 
of two irreducible representations of S3. 

SPIN AND ISOSPIN FUNCTIONS 

The classification of isospin and spin functions 
according to irreducible representations of 5 3

r and Sf 
is well known. Since definite transformation properties 
under SU2 are required, vector-coupling coefficients 
are used in forming products: 

{^( l ) ,^ (2)}^=ZmC m
1 / 2 M-J/2SSm(<ri)SM-m(<T2), (4) 

etc., where the left-hand side of (4) will be written 
simply {s(l),s(2)}s, since the M value is immaterial. 

The three-particle isospin functions are 

T^={{t(i)A2)}n(3)y;\ 

T^={{t(l),t(2)}H(3)}^, 

T21/2={{t(l)A2)}0K3)V/2. 

(5) 

TABLE I. Products of representations of S3. 

RS(<P)®RS(X)=RS(<PX) 

RS(<P)® RM (XI>X2) = RM ( <PXI, VX2) 

RSM®RA(X)=RA(<PX) 

RM (<pi, <pi) 0 RM (XI>X2) = Rs ( <P\XI + ^2x2) 
@RM(<P2X2~ <PlXh <PlX2+ <P2Xl) 
®RA(<PIX2—<P2XI) 

R A (<P)®RM (XI,X2) = RM (<PX2, — <PXI) 

RAMRA®(X)=RS(<PX) 

isospin-spin (TS)R functions can now be constructed 
with the aid of Table I : 

(f,f)s=P3/223/2, 
(ii)^2-1/2(r1i/221

1/2+r2
1/2s2

1/2), 

{h^Mi,2-{T^^i\T^2112), 

M)MI,2={T^^\T^I^^)^ (6) 

(*,*)ATI.2= (2-1/2[P2i/222
1/2-P1

1/2S1
1/2], 

2 - l / 2 [ r i l / 2 2 2 l / 2 + r 2 l / 2 2 l l / 2 ] ) y 

{U)A = 2-II2{TI1I2W2- P 2
1 / 2 2I 1 / 2 ) . 

The subscripts S, M, A indicate the representation of 
SzT<T to which the isospin-spin functions belong. With 
the factors 2~1/2 as shown, the functions are orthonormal. 

Thus, if space function(s) /RL(Q,X) is given, con
struction of possible antisymmetric functions \pRTSLJ 

with space part JRL follows from Table I and is given 
in Table II. In Table II, the vector coupling is between 
the spin part of (TS)R and the space functions JRML

L 

making up /RL. 

SPACE FUNCTIONS 

From these preliminaries, it is clear that what is 
required now is a classification of functions fRL(X,g) 
according to irreducible representations of the rotation 
group 0 3 (specified by L) and 5 / (specified by subscript 
S, M, A). The materials available for these functions 
are the three vectors X, 9, and X x 9. Hence there are 
three independent scalars X2, p2, and X-Q. Any Z = 0 
function must be a function of these three scalars. I t 
follows immediately that there are no odd-parity L — Q 
functions. 

TABLE II. Wave functions associated with space functions 
belonging to a definite representation of SzT. 

The function P3/2 belongs to Rs of Sd, while T^2 and 
7Y/2 belong to RM in standard form. The spin functions 
23/2, Si1/2, and S2

1/2 are defined analogously. The 

Space functions 

Rs(fsL) 
Ru(hL,m 

RAUAL) 

Wave functions 

tS»
LJ=«h,i)A,fsLV 

f M i hLJ={ (U)mt flL_ ( | ) i W ; fiL}J 

+Mi |S/ = { (1 J ) M 2 ) f]L_ ( J f | ) j n > fiL}J 

**» iLJ= { ( M ) J « , fiL- (hi)Mi, hLY 
wiiLJ={{M)sjALy 
^*»W={(H)s, /A*}' 
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The L = 0 even-parity functions will now be classified 
according to irreducible representations of S3. Since 
(^,9) belong to RM in standard form, Table I gives for 
the bilinear scalars: 

= RS(\2+P2)®RM(P2-\\2X.9). (7) 

I t is now time to note the special role played by 
symmetric scalars (space functions with L = 0 belonging 
to Rs). If a function \pRTSLJ is multiplied by any 
function of symmetric scalars, the resulting product has 
the same quantum numbers TSLJR. I t is therefore 
convenient to consider only "S-independent" space 
functions: The functions fi, /2 , • • •, /N are aS-independ-
ent" if and only if 

E g . W v ••)/<=0 (8) 

implies gi=0 for all i, where the gi(shS2- • •) are functions 
of the symmetric scalars si, s2 • • •. All space functions 
with definite L can be generated from the ^-independent 
space functions with that value of L and the symmetric 
scalars. The value of this procedure is due to the fact 
that, as will be seen, the number of independent 
symmetric scalars is finite and equal to three, and the 
number of S-independent space functions with a given 
L is also finite.1 

I t follows that the symmetric scalar r = \ 2 + p 2 may 
be ignored in constructing further L = 0 functions. 
Because of the special role played by p2—X2 and 20i-{>, 
it is convenient to introduce s and <p by 

p*-\*=rscos<p, 0<s<l (9) 

2X'$=rs §m<p , — 7r<^<7r 

so that the bilinear mixed representation is ^-equivalent 
to RM (S cos<p, S sin<£>). Further irreducible represen
tations can only be generated by the direct product of 
this mixed representation with itself, which gives 
(Table I) 

Rs(s2)@RM(-s2 COS2^, S2 sin2<?), (10) 

so that it is clear that s is a symmetric scalar and 
RM (cos <p, sin <p) and RM'(CO$2(P, — sin2<^) are mixed 

representations in standard form. Their product is 

RM®RM= Rs(cos3<p) 

®RM(—COS(P, — sin<p)©i?A(—sin3^). (11) 

The independent symmetric scalars thus far are r, s, 
and cos3<p, while the S-independent scalars are RsO), 
RM(cos<p,sin<p), RM'(cos2<p, — sin2<p), and i^(sin3<£>). 
Further, 

RM'®RM'=-RSW@RM"(-COS4:<P, -sin4«*), (12) 

1 E. Jezak, Ph.D. thesis, University of Minnesota, 1962 (un
published). 

A N D E . J E Z A K 

but 
i?M"(cos4<£>, sin4<£>) = 2 cos3 <PRMQRM' (13) 

and is therefore not S-independent of RM and RM'. 
Similarly, 

RA®RM=RM{i)(sm3(p sin<p, — sin3<p cos<p) 

= -cos3 CPRM®RM' , (14) 

RA ® RM = RM (4) (sin3 <p sin2 cp, — sin3 <p cos2 <p) 

= cos3 <PRM © RM , 

and therefore these products give rise to no further 
S-independent scalars. 

Thus, there are in all three independent symmetric 
scalars: r, s, and cos3<p; one antisymmetric scalar: 
sin3 <p; and two S-independent mixed scalars, which will 
be taken to be RM (cos (p, sin cp) and RM(sin3<p sin<p, 
— sm3<p coscp). I t is convenient to divide sin3<£> by the 
symmetric scalar (1—cos23<£>)1/2, so that the final 
notation for the S-independent scalars is 

SM= (cos<p, sixicp), 

sin3<p 
SN=: (sin^5, — zos<p), (15) 

( l - c o s ^ ) 1 ' 2 

SA = sin3 <p/(\ — cos23 cp)112. 

The most general symmetric scalar is an arbitrary 
function of r, s, and cos3 <p, or, equivalently, a function 
g(r,s,<p) that is an arbitrary function of r and s, and is 
an even function of cp with period 27r/3. The notation 
g(r,s,(p) will be used exclusively for such symmetric 
scalars. 

In order to construct functions with L > 0 , it is 
convenient to replace Oi and 9 first by the vectors 

r e = a . c o s p + p s i n p , 

r 0 = A sm<£>— 9 cos<£>, 

belonging to Rs and RA of S3, respectively. The repre
sentation RM(\Q>) can be obtained from (16) and (15): 

RM(W = lR8(Te)®SM]M®lRA(T0)®SMlM. (17) 

Then re and r0 are replaced by the equivalent vectors 

re(l+cos3<p)+r0 sin3<p 

[r(l-s)(l+cos3cp)Jt2' 
(18) 

re (1 — cos3 <p) — r0 sin3 <p 

{r(\+s)(l-cos3<p)J'2' 

which both belong to Rs of S3 and satisfy 

2 y > = i y = l , Rx .R 2 =0. (19) 

Since re is S equivalent to a linear combination of Ri 
and R2 and rG is S equivalent to a linear combination 
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of S ^ R i and SJL<S)R2, it follows that the most general 
space functions can be formed by using Ri and R2 to 
form space functions belonging to Rs of £3 and then 
using the functions in (15) to generate one symmetric 
representation, one antisymmetric representation and 
two mixed representations from each of the symmetric 
space functions. For example, the odd-parity L—\ 
space functions are generated by Ri and R2: 

Rs(JBLi®Ss), Rs(R2®Ss), 

RA(RI®SA), RA(&2®SA)7 

RM(RI®SM), RM(JLI®SN), 

RM(R2®SM), RM(R2®SN). 

(20) 

All L—\ odd-parity functions are ^-dependent on the 
^-independent functions (20). 

The only symmetric even parity L—\ function is 

R s = R i X R 2 = 
sin3<p 21X9 

( l - c o s ^ ) 1 ' 2 r(l-~s2)1/2 
(21) 

When a vector is to be vector-coupled, its components 
are understood to be 

Ro=-iRz, 

R±1=2-v*(±iRx-Ry). 

The choices give 
Rm*=(-y-mB-

(22) 

(23) 

for Ri, R2, and R3 

The independent 2 + functions are 

{Ri,Ri}2, {Ri,R2}2, and {R2,R2}2 (24) 

and the 2— functions are 

{R1,R3}2 and {R2,R3}2. (25) 

In general, for ir=(—)L, there are L+l- independent 
LTT functions: 

R2}M+1,R2}"+2---R2}1, (26) 

with » = 0 , 1, •••L, For ir=(— ) L + 1 , there are L-
independent functions: 

fiML={fiEL-\~Rz}L i = 0 , 1, • • - L - l . (27) 

The choices (26) and (27) give 

UL*=(-)L-mUm
L (28) 

for all functions. 
I t follows from Table I I and the preceding that a 

wave function \pRy
TSLJ is constructed from a symmetric 

space function fy
L according to 

fRyTaLJ={(TS)R,®Jy
LSB}AJ 

= {((TS)R,®SB)A,fyL}J 

-({(TS)R,,fy
Ly®SR)A, (29) 

where Rf is the representation adjoint to R, namely, 
RS, — RA, RA/==RS, RM =^RN~RM. 

Consider 
ORTHONORMALITY 

E l rlnrl^OT, .r 'S'L'J 'fl- 'Vvr, . *. , *, ,T'S'Lf J ' T T ' * - TSLJwJ. n, %r TSLJic—J( T'S'L'J'TC' ', \a§a<kgRiy* WR2y'MT'Mj> gRiy YRiyMTMj £ KRW'MT'MJ" Rv 
TSLJTT 
JMTMJ ) , (30) 

where g is a symmetric function and \pR7
TSLJ is constructed from the space function fy

L7rSR and the isospin-spin 
function (TS)R> according to (29). The labels M and N are considered different values of R. The index 7 is used to 
distinguish different space functions with the same L, T, R. 

Summation over the isospin and spin coordinates gives 

j( T'S'L'J'TV' TSLJTT \_* * * * s^ r* SL'JT SLJ 
1 \Rzy'MT'MjH RIJMTMJJ ~ ORI'RtfOTT'OSS'OMTMT' 2-, ^mML'Mj' ^mMhMj 

dpdlg i?27 
TSL'J'Tr'*„„ TSLJr-f , „ ,L'v'*f „, LTT gR: 

where Table I has been used. I t follows from (15) that 

(SR2^SR1)S—^RIR2' 

Use of (28) together with rotation and inversion invariance gives 

'fTML'L'r'*fyMLLr(SB&SRda, (31) 

(32) 

^(R^MT^My'RiyM^Mj) ^ ^RlRi^TT'^SS^MTMT^LL'^JJ'K^MjMj'' J 7 ' Y (33) 
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JytyTSLjrR= ( 2 Z + l ) - i £ / d9dXgR7^^^gRy^^(-)^^fyf_MLLrfyMLL, 
ML , 

(2L+1)-1/2 / dQdXgBy^LJ^gByTBLJr{fytLrJyLr}09 (34) 

The integrand depends only on r, s, and <p, so that the integrations over dQ,p and the azimuthal angle of *X about 9 
can be performed immediately; they yield 

/.CO /.CO /«1 

/f,«i« = 8T2 p 2 r f p / w x / d M g J ! 7 , T S L / ^ B 7 r s w , ( 2 L + i ) - i / s { / y L % / 7 i - } o f (35) 

Jo Jo J—1 

where /x is the cosine of the angle between 3t and Q. The Jacobian d(p\/j,)/d(rs<p) can be obtained from 

p2=(r/2)(l+sco$(p), 

X2=(r/2)(l-scos<p)y (36) 

s sin<p 

and it is 

so that 

(1 — s2 cosV)1/2 

d(p\d/d(rs<p) = --r*s/16\y, (37) 

j T8LJTB = _I Mrl sdsl d<pgRY
TSLJ**gRy

TSLJ* ( A ' 1 ' , / / ' } 0 

2 Jo Jo y_r/8 (2L+1)1 '2 

= —\t*dr\dst\ d<pgByTaLJ<tgRyTaLJ* {fft",fyL'Y, (38) 
4 i 0 Jo Ax/3 (2L+1)1 '2 

where the fact that g and {/,/}° are functions of 3<p with period 2x has been used. 
The functions fy

LT will be chosen so that 

T^T^{A'LV"}"5^- (39) 

Then 
/•CO / » 1 / » 7 r / 3 

I(£*M'JUS- Ryufu,) = &11 labels • / r2Jf / ds* / rfp | g * 7
T « " | 2 . ( 40 ) 

^ 0 Jo J-ir/2, 

Clearly, For the 2 + functions, let 
/ C + = 2 / T T V J . (41) 

2 2 
For the functions with L^O, the relations ~{Ri ,R i}^ = / i , -{Ri,R2} ( 2 ) = / 2 , 

( l /vS){A,B}o=tA.B, T x
 2 

[1/(5)]1/2{{A,B}2,{C,D}2}° ~{R2,R2} (2 ) = / 3 . (46) 

= - ( l / 1 5 ) ( A . B ) ( C D ) Then themat r ix 
+ ^ ( A . C B . D + A . D B . C ) , (42) 

(37r2/4) • 5~1/2{ U f }(0) = M • • (47) 
which are easily proved, are needed. The 1+function is y j ^ j n %J 

/ 1 + = C 1 + R „ (43) is, according to (42) 

and (39) and (42) give I 0 - i 
. - * o 5 u 5 

(48) 
(3TT2/4) • \Ri • C1+

2= 1 = (x2/4)C1+
2. (44) 

Hence, 
/ 1 + = ( 2 / T T ) R 3 . (45) I t follows that / i + / 3 , ft, and / i - / 3 are mutually 
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orthogonal; hence, choose 

(10)1'2 

fJ+=- C{Ri,Ri}»>+{R,,Rs}«] 

1 / I O N 1 ' 2 

h 2 + \ j ) C{R1 ,Ri} (2 )-{R2,R2} (2 )] (49) 

/ 7
2+=(2/r)(10/3)^{R 1 ,R 2}( 2>. 

A similar procedure can be used to orthogonalize the 
set of fy

L* for any Lw and hence satisfy (39). 

WAVE FUNCTION OF THE TRITON 

The triton and He3 have T=J, JTT=%+. Hence the 
possible states 2S+1LB are, according to Table I I , 
2SS,M,N,A, 2PS,M,N,A, 4PM,N, ADM,N- There are one / 0 + , 
one f1+, and three p+ functions, and thus sixteen vector 
harmonics occur, corresponding to 2SS,M,N,A, 2PS,M,N,A, 
*PM,N, and *DM,Na'P'7- There are sixteen coupled 
partial differential equations in r, s, and cos3<? for the 
sixteen symmetric scalar functions g in 

^ l / 2 ; l / 2 + = £ gRyll2SLll2+xf/Bnl/2SLl/2+ ^ (50) 

RELATIONSHIP TO PREVIOUS CLASSIFICATIONS 

According to (15) and the discussion preceding, the 
most general mixed scalar is 

(gi cos (p+g2 sin3 ip sin<£, g\ sin <p 

-g2 sm3<p cos<p)= ( / i , / 2 ) , 

where 

and 
fl(—<P) = fl(<p), f2(—<p)=—f2(<p) 

/if H j = gi cosf <p-\ )+g2 sin3<p sinf <p+ 
2TT\ 

3 / 

= (gi cos^?+g2 sin3<p sin<p) cos-
2TT 

— (gi sin ̂ —g2 $in3<p co$<p) sin-
2TT 

2TT 2TT 

= fi(<p) cos f2((p) sin— 
3 3 

jkf <P+— ) = fi(<p) sin—+f2(<p) cos-
2TT 

3 

2TT 

3 ' 

Hence, it is possible to specify the mixed representation 
M(fhf2) as consisting of functions / i and f2 satisfying 
the above restrictions. This halves the "number" of 
mixed representations; it also complicates the ortho-
normality relations and confuses the situation as to the 
number of independent functions. I t has proved useful 
in the past.2 

The results of the present work are the same as those 
given by Clapp3 for the triton. However, the present 
work generalizes these to all three-nucleon states and 
introduces a simplified notation. 

2 G. Derrick and J. M. Blatt, Nucl. Phys. 8, 310 (1958). 
3 R. E. Clapp, Ann. Phys. (N. Y.) 13, 187 (1961). 
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We develop a peripheral method for predicting ir—N phase shifts up to moderate energies. Precise values 
are given for the p-, d-, and /-wave phase shifts (with the exception of pn) up to 400 MeV, and the general 
behavior up to around 1 BeV is also predicted. The 600- and 900-MeV iC—p resonances are clearly identified 
with the D\% and Fn amplitudes, respectively, and it is probable that the 1.35 BeV ir+—p resonance is in 
F37. The predictions at 310 MeV select the phase shift set spdf I I of Vik and Rugge. The method consists in 
evaluating the dispersion relation for Fi±(s)=fi±(s)/q21 where fi±(s) is the partial-wave amplitude. The 
factor q~21 suppresses the unknown shorter range parts of the T—N interaction. Various means are used to 
avoid the difficulties arising from lack of knowledge of the inelasticity. The symmetries in spin and isospin 
of the dispersion relation calculations of the various interactions are examined, together with equivalent 
model potentials. 

1. INTRODUCTION 

TH E various parts of the pion-nucleon interaction 
have been studied in detail.1 The parts of longest 

range are the long-range Born term (i.e., nucleon ex-

* This work was supported in part by a grant from the European 
Office of Aerospace Research, U. S. Air Force. 

1 J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick, Phys. 

change), and the exchange of a low-energy s-wave pion 
pair. Shorter in range are the crossed physical cut term 
(which is mainly nucleon isobar exchange) and the 
exchange of a p meson. In addition there is a very-short-
range interaction (range < 2 lO-14 cm) about which 

Rev. 128, 1881 (1962) (and earlier papers cited there). This paper 
will be referred to as HMOV. 


